

Owner's Manual

- Installation
- Use
- Maintenance

A member of the Interpump Group

KFMZ SERIES

INDEX

1.	INTRODUCTION	4
2.	SYMBOL DESCRIPTIONS	: 4
3.	SAFETYPage3.1 General safety instructionsPage3.2 High pressure unit safety requirementsPage3.3 Safety during operationPage3.4 General procedures for using nozzlesPage3.5 Safety during unit maintenancePage	4 4 5 5 5
4.	PUMP IDENTIFICATION	5
5.	TECHNICAL DATA	6
6.	DIMENSIONS AND WEIGHT	6
7.	INFORMATION REGARDING PUMP USEPage7.1 Maximum flow and pressure valuesPage7.2 Lowest operating RPMPage7.3 Recommended lubricant types and ManufacturersPage	7
8.	PORTS AND CONNECTIONS	8 :
9.	PUMP INSTALLATIONPage9.1 InstallationPage9.2 Direction of rotationPage9.3 Version changePage9.4 Hydraulic connectionsPage9.5 Pump feedingPage9.6 Suction linePage9.7 Delivery linePage9.9 V-belt transmissionPage9.10 Transmission DefinitionPage9.11 Definition of belt static tension values	8 8 9 9 9 9 10 12
10.	START UP AND OPERATIONPage10.1 Preliminary inspections.Page10.2 Starting up.Page	: 12
11.	PREVENTATIVE MAINTENANCE	: 13
12.	STOPPING THE PUMP FOR LONG PERIODS	13 13

GENERAL PUMP A member of the Interpump Group

INDEX (continued)

13.	PRECAUTIONS AGAINST FREEZING	.Page 13
14.	WARRANTY TERMS	.Page 13
15	TROUBLESHOOTING	.Page 14
16.	EXPLODED VIEWS AND PARTS	.Page 15-16
17.	MAINTENANCE LOG	.Page 17

1. INTRODUCTION

This manual describes the use and maintenance instructions of the KFMZ pump, and should be carefully read and understood before pump operation.

Correct use and adequate maintenance will guarantee the pumps trouble-free operation for a long time. General Pump declines any responsibility for damage caused by misuse or the non-observance of the instructions indicated in this manual.

Upon receiving the pump, check that it is complete and in perfect condition. Should anything be found out of order, please contact us before installing and starting the pump.

2. SYMBOL DESCRIPTIONS

WarningPotential Danger

Read carefully and understand the manual before operating the pump

Danger High Voltage

Danger Wear protective mask

Danger Wear goggles

DangerWear protective gloves

DangerWear protective boots

3. SAFETY

3.1 General Safety Indications

The misuse of pumps and high pressure units, and the non-observance of installation and maintenance instructions may cause severe injury to people and/or damage to property. Anyone requested to assemble or use high pressure units must possess the necessary competence to do so, should be aware of the characteristics of the components assembled/used, and must adopt all the necessary precautions in order to guarantee maximum safety in any operating condition. In the interest of safety, no precaution that is reasonably feasible must be neglected, both by the Installer and the Operator.

3.2 High pressure unit safety requirements

- 1. The pressure line must always be equipped with a safety valve.
- 2. High pressure unit components, in particular for those units working outside, must be adequately protected against rain, frost and heat.
- 3. The units electrical parts must be adequately protected from bentonite spray, and must comply with the specific norms in force.
- 4. High pressure hoses must be correctly sized for the unit's maximum operating pressure, and must only be used within the pressure range indicated by the hose manufacturer. The same conditions apply to all other unit accessories where high pressure is involved.
- 5. The extremeties of high pressure hoses must be sheathed and fastened to a steady structure in order to avoid dangerous whiplashes should they burst or should their connections break.
- 6. Appropriate safety guards must be provided for the pump transmission systems (joints, pulleys and belts, auxiliary drives).

3.3 Safety During Operation

The working area of a high pressure system must be clearly signalled. Access must be prohibited to non-authorized personnel and, if possible, the area must be fenced in. The personnel authorized to access this area must be previously trained, and informed about the risks that may arise from failures or malfunctions of the high pressure unit.

Before starting the unit, the operator must check:

1. That the high pressure unit is correctly fed (see paragraph 9.5).

3.3 Safety of Operation (continued)

- Suction hose should clean and free from obstructions of any kind. The use of a settling tank, where applicable, is recommended.
- 3. That electrical parts are adequately protected and in perfect condition.
- 4. That high pressure hoses do not show apparent signs of abrasion, and that fittings are in perfect shape.

Any anamoly or reasonable doubt that may arise before or during operation must be promptly reported and verified by competent personnel. In these cases, pressure must be immediately released and the high pressure unit stopped.

3.4 General Procedures For Using Nozzles

- The Operator must always place his own and other worker's safety before any other interest; his actions should always be governed by good sense and responsibility.
- The Operator must always wear a helmet with a protective visor, waterproof clothing, and appropriate boots capable of guaranteeing grip on wet pavement.

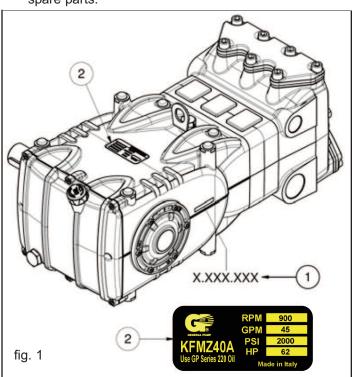
Note: appropriate clothing will effectively protect against water spray, but it may not offer adequate protection against the direct impact of water jets or sprays from a close distance. Some circumstances may require further protection.

- We advise to employ a team of at least two Operators, able to provide mutual and immediate assistance if needed, and to rotate their duties in case of long and heavy work.
- 4. Access to the work area that is within the water jets' range must be absolutely forbidden; the area must be free of objects that may be unintentionally hit by the pressurized jet, causing damage or dangerous situations.
- The water jet must only and always be directed towards the work area, even during testing or preliminary inspections.
- The Operator must always pay attention to the trajecto ry of the debris removed by the water jet. If necessary, adequate side guards must be provided by the Operator in order to protect anything that may be acci entally exposed.
- 7. For no reason must the Operator be distracted during operation. The personnel that needs to access the working area must wait for the Operator to suspend his work, and then immediately make his presence known.
- For safety reasons, it is important that each member of the team is perfectly aware of the intentions and actions of other team members in order to avoid dangerous misunderstandings,

 The high pressure unit must not be started and brought up to pressure unless each member of the team is in his designated position, and the Operator has already directed the nozzle towards the work area.

3.5 Safety During Unit Maintenance

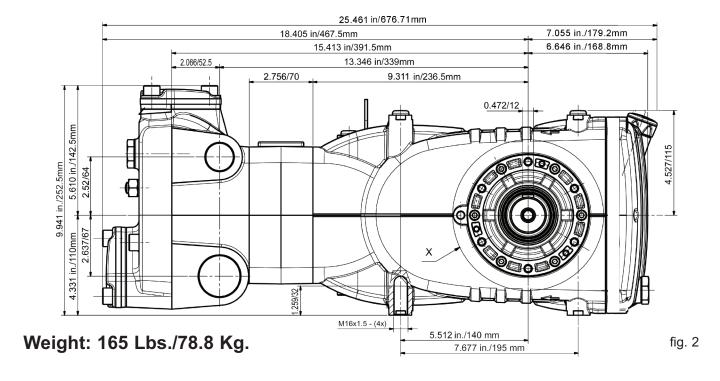
- The maintenance of the high pressure unit must be done within the time intervals indicated by the Manufacturer, who is responsible for the entire unit's compliance with the norms in force.
- 2. Maintenance must always be carried out by special ized and authorized personnel.
- Assembly and disassembly of the pump and its various components must be performed exclusively by author ized personnel, using appropriate tools in order to avoid damage to components and connections.
- 4. To guarantee total reliability and safety, always use original spare parts.

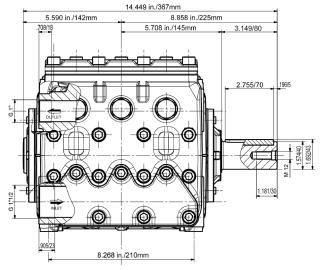

4. PUMP IDENTIFICATION

Each pump (fig. 1) has: its own serial number XX.XXX.XXX (see point 1) and a rating plate (see point 2) that indicates:

Pump model and version Maximum RPM Power absorbed Hp-kW Flow Rate I/mn - GPM Pressure bar/PSI

> Pump model, version and serial number must always be specified when ordering spare parts.




5. TECHNICAL FEATURES

MODEL	RPM	FLOW RATE		PRESSURE		POWER	
WIODEL	IXFINI	GPM	l/min	PSI	Bar	Нр	
KFMZ40A	900	45.0	170	2000	138	62	

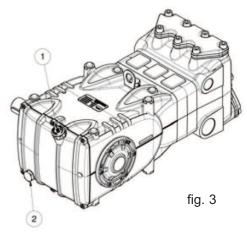
6. DIMENSIONS AND WEIGHT

For dimensions and weight of Standard Version pumps, please refer to fig. 2.

7.INFORMATION REGARDING PUMP USE

7.1 Max Flow Rate and Pressure Values

The performance values indicated in the catalog refer to the maximum performance of the pump. **Regardless** of the power used, pressure and maximum RPM values indicated on the plate may not be exceeded unless expressly authorized by the **Customer Service Department**.

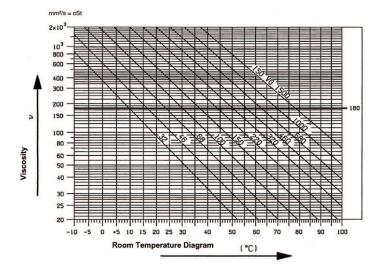

7.2 Lowest RPM

Any RPM value different from what is indicated in the performance table (see chapter 5) must be expressly authorized by the **Customer Service Department**.

7.3 Recommended Lubricant Oil Types & Manufacturers The pump is delivered with lubricant oil compliant with room temperatures ranging between 32° and 89.6° F (0° and 30°C). Some recommended lubricant types are indicated in the table below; these lubricants are treated with additives in order to increase corrosion protection and resistance to fatigue. As an alternative, Automotive SAE 85W-90 gearing lubricants may also be used.

BRAND	TYPE
GENERAL PUMP	SERIES 220
ARAL	Aral Degol BG220
BP	ENERGOL HLP 220
CASTROL	Hyspin VG 220, Magna 220
ELF	POLYTELIS 220
ESSO	NUTO 220
FINA	Cirkan 220
FUCHS	RENOLIN 220
MOBIL	DTE OIL BB
SHELL	TELLUS C 220
TEXACO	RANDO HD 220
TOTAL	CORTIS 220

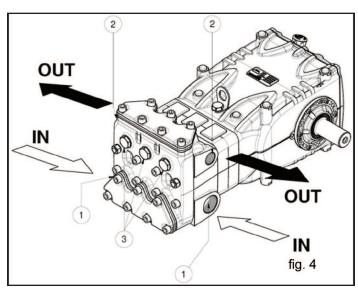
Check the oil level by using the oil level dipstick (1), fig. 3. Refill if needed. Correct oil level inspection is done with the pump at room temperature; oil is changed with the pump at working temperature, by removing oil level dipstick (1) and the plug (2), fig. 3. Oil inspection and changing is to be carried out as indicated in the table in fig. 14, Chapter 11. The amount required is 128.5 oz.(3.8 liters).



In any case, oil must be changed at least once a year since it may deteriorate by oxidation.

For room temperatures that differ from that mentioned earlier, follow the indications contained in the diagram below, keeping in mind that the oil must have a minimum viscosity of 180 cSt.

VISCOSITY/ROOM TEMPERATURE DIAGRAM



Exhausted oil must be collected in an appropriate recipient and disposed of in appropriate locations. In absolutely no case may it be dispersed into the environment.

8. PORTS AND CONNECTIONS

KFMZ Series pumps (see fig. 4) are provided with:

- 2 inlet ports "IN", 1-1/2"NPT.
 The line can be connected to either of the two inlet ports: the one not being used must be hermetically sealed.
- 2. 2 outlet ports "OUT", 1: NPT.
- 3. 3 auxiliary ports, 1/2" NPT, used for the pressure gauge only.

9. PUMP INSTALLATION

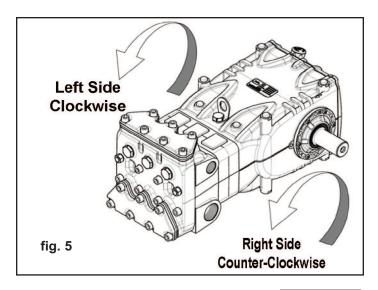
9.1 Installation

The pump must be installed in a horizontal position using the correct threaded feet M 16x1.5, fasten the screws with a torque value of 155 ft. lbs. (210 Nm). The base must be perfectly flat and sufficiently rigid in order to avoid bending and misalignments on the pump/transmission coupling axis due to the torque applied during operation. The unit must not be rigidly fixed to the pavement, but requires the use of anti-vibration elements. For special applications, please contact the **Customer Service Department**.

The pump is equipped with a lifting eyebolt to facilitate installation, as shown in the following figure.

In case of disassembly, to avoid letting dirt inside the front part of the crankcase, close the threaded hole with the supplied cap.

Replace the oil cap (red), located on the rear crankcase cover, with the oil dipstick and check oil level. The oil dipstick must always be accessible, even when the unit is assembled.



The pump's shaft (PTO) must not be rigidly connected to the motor unit. The following transmission types are suggested:

- Hydraulic by means of a flange; for correct appli cation, please contact the Customer Service Department
- V-belts
- Cardan joint (please respect the maximum working angles indicated by the Manufacturers)
- Flexible joint

9.2 Direction of rotation

An arrow situated on the crankcase near the shaft indicates the correct direction of rotation. Standing in front of the pump head, the direction of rotation must be as shown in fig. 5.

A member of the Interpump Group

KFMZ SERIES

9.3 Version Change and Reducer Positioning

A right version pump is defined when: observing the pump from the head side, the PTO shank of the pump shaft is on the right side.

A left version pump is defined when: observing the pump from the head side, the PTO shank is on the left side. See fig. 5 (which shows a right version).

The version may be changed only by specialized and authorized personnel by carefully following the instructions in the repair manual.

- 1. Separate the hydraulic part from the mechanical part as indicated in Chapter 2, paragraph 2.2.1 of the repair manual.
- Rotate the mechanical part by 1800, and reposition the rear crankcase cover to that the oil dipstick is fac ing upwards; reposition the lifting eyebolt ant the related closing caps in the upper part of the crankcase; finally, correctly reposition the identification plate in its appropriate seat on the crankcase.

Be sure that the lower draining holes on the crankcase near the plungers are open, and not closed by the appropriate caps as required for the previous version.

Join the hydraulic part with the mechanical part as indicated in Chapter 2, paragraph 2.2.5 of the repair manual.

9.4 Hydraulic Connections

In order to isolate the system from the vibrations produced by the pump, we advise to build the first section of the duct near the pump (both for intake and delivery) with flexible hose. The consistency of the intake section must allow to avoid deformation caused by the depressurization produced by the pump.

9.5 Pump Feeding

In order to ensure the correct volumetric efficiency a minimum positive head of 0.20 meters is required. Negative suction heads are not allowed.

9.6 Suction Line

For the pump's correct operation, the suction line must have the following characteristics:

1. Minimum internal diameter as indicated in the diagram in paragraph 9.8, and in any case equal or greater than the pump head's value.

Along the duct, avoid localized diameter reductions that may cause pressure drops with subsequent cavitation. Absolutely avoid 90° elbows, connections with other hoses, bottlenecks, counter-slopes, upside down "U" shaped curves, "T" connections.

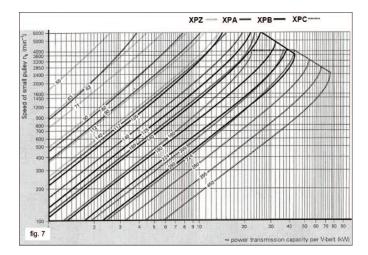
- 2. The selected lay-out must allow to avoid cavitation.
- 3. It should be perfectly airtight, and built in a way that guarantees perfect sealing over time.
- 4. Avoid pump emptying when stopping (even partial emptying).
- 5. Do not use hydraulic-type fittings, 3 or 4 way fittings, adapters, etc., since they may hinder the pump's performance.
- 6. Do not install Venturi tubes or injectors for detergent intake.
- 7. Avoid the use of standing valves, check valves, or any other type of one-way valves.
- 8. Do not connect the by-pass line from the valve directly to the pump suction line.
- Provide appropriate baffle plates inside the tank in order to avoid bentonite flows coming from both the bypass and feeding lines may create turbulance near the tank's outlet port.
- 10. Make sure that the suction line is perfectly clean inside before connecting it to the pump.

A member of the Interpump Group

KFMZ SERIES

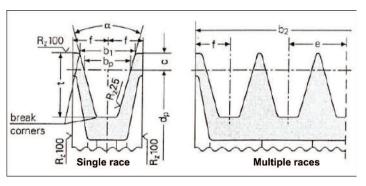
9.7 Delivery Line

To obtain a correct delivery line, please comply with the following installation instructions:


- 1. The internal diameter of the pump must allow to guarantee correct fluid speed; see digram in paragraph 9.8.
- The first section of the hose connected to the pump must be flexible in order to isolate pump vibrations from the rest of the system.
- 3. Use high pressure hoses and fittings that guarantee wide safety margins in any working condition.
- 4. Use pressure switches suitable for the pulsating loads typical of plunger pumps.
- In the design phase, take into proper account the pressure drop along the line, since this causes a reduction in usage pressure with respect to the value measured at the pump.
- 7. If the pump pulsations are harmful for particular applications, install an appropriately sized pulsation dampener on the delivery line.

9.9 V-belt Transmission

The pump may be driven by a v-belt system. For this pump model, we suggest to use 4 XPB belts (16.5 x 13 cogged); only for long durations, use the XPC profile; both the characteristics and the power transmission capacity of each belt can be verified on the diagram in fig. 7, in function of the number of rotations normally declared by the Manufacturer. Minimum diameter of the driven pulley (on the pump shaft): ≥ 250 mm. The radial load on the shaft must not be greater than 7500 N (value required for the fefinition of the layout). The transmission is considered adequate if this load is applied at a maximum distance of a=40 mm form the shaft shoulder (PTO) as indicated in fig. 10


For sizing that differs from that indicated above, please contact our **Customer Service Department.**

9.10 Transmission Definition

To avoid abnormal radial loads on the shaft an its related bearing, please comply with the following indications:

a) Use pulleys for v-belts with race dimensions prescribed/recommended by the belt Manufacturer. Should no indications be supplied, please see fig. 8 and the table in fig. 9.

Dimensions (in mm)

Belt section as indicated in			symbol DIN		XPB/SPB	XPC/SPC	
DIN 7753 part 1 and B.S. 3790		symbol B.S./ISO		SPB	SPC		
	Belt section as indicated in DIN 2215 and B.S. 3790		symbol DIN symbol B.S./ISO		17 B	22 C	
	h widt			O _w	14.0	19.0	
			α = 34°	- W	18.9	26.3	
	In	creased race width b₁≈	$\alpha = 38^{\circ}$		19.5	27.3	
			•	С	8.0	12.0	
Dis	tance l	between races		9	23 ± 0.4	31 ± 0.5	
				f	14.5 ± 0.8	20.0 ± 1.0	
Inc		race depth	t	min	22.5	31.5	
α	34°	For a primitive diameter		$d_{\mathbf{w}}$	from 140 to 190	from 224 to 315	
	38°	narrow section v-belt DIN 7753 part 1			> 190	> 315	
α	34°	For a primitive diameter		d _w	from 112 to 190	from 180 to 315	
	38°	classical section v-belt DIN 2215			> 190	> 315	
Tol	erance	for α = 34°-38°			± 1°	± 30'	
		er b2 per		1	29	40	
		f races z		2	52	71	
b2 :	= (z-1)	e + 2 f		3	75	102	
				4	98	133	
				5	121	164	
				6	144	195	
				7	167	226	
				8	190	257	
				9	213	288	
				10	236	319	
				11	259	350	
				12	282	381	

The pulley's minimum diameter must be respected. Do not use for banded v-belts.

fig. 9

b) Use high efficiency belts - for example **XPB instead of SPB**; this will allow to use a lower number of belts to transmit the same power, and consequently a minor distance of the resultant from the shaft shoulder (PTO) "a" in fig. 10.

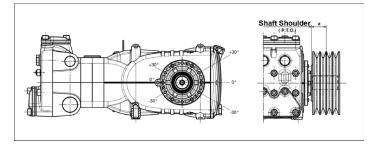


fig. 10

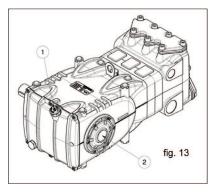
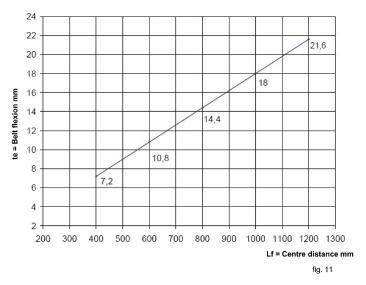

- c) Set belt tension according to the Manufacturer's prescriptions: an excessive value will abnormally stress the bearing, reduce its duration, and cause premature wear of the pulley. The tension value depends on different variables as indicated in paragraph 9.11.
- d) Belt length has a natural tolerance $\geq \pm 0.75\%$; for this reason the four belts must be purchased in pairs.
- e) Follow the belt tension direction as indicated in fig. 9; for different needs, please contact the **Customer Service Department**.
- f) Carefully align driver pulley and driven pulley races.

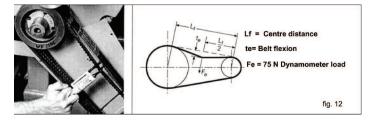
fig. 8 Page 11

The suction line is connected and up to pressure (see paragraphs 9.4, 9.5 and 9.6) the pump must never run dry.

- 1. The suction line must be perfectly airtight.
- 2. All the On-Off valves between the pump and the feeding source are completely open. The delivery line must discharge freely in order to allow the air in the pump to be expulsed easily, thus facilitating pump priming.
- 3. All suction/delivery connections and fittings must be correctly tightened.
- Coupling tolerances on the pump/transmission axis (half-joint misalignment, Cardan inclination, belt tightening, etc.) must remain within the limits indicated by the transmission Manufacturer.
- 5. The pump's oil level must be verified using the correct dipsticks (position 1, fig 13), and expecially by means of the oil sight glass (2, fig. 13).


In case the pump has not run for a long period of time, recover the correct operation of the suction valves.

9.11 Definition of belt static tension values


Static tension depends on:

- a) the center distance between the two pulleys (belt length)
- b) The load due to the belt's static tension
- c) The number of belts
- d) The angle of wrap of the smallest pulley
- e) Average speed
- f) Etc.

For belts with an XPB profile, the diagram in fig. 11 allows to obtain the valued of the static tension that must be applied vs. the center distance between pulleys.

Finally, given a distance between pulley centers of 600 mm and a load of 75 Nm a belt flexion "te" of around 10.8 will confirm the correct belt tension as shown in fig. 12.

NOTE: If not differently indicated by the belt manufacturer the inspection of the correct tension value, and the related tension adjustment if needed, is to be carried out after at least 30 minutes of operation in order to obtain belt setting. The best efficiency and maximum duration is obtained with the correct tension value.

NOTE: If required, or during dormal maintenance, never replace a single belt but the entire set.

10. START-UP AND OPERATION

10.1 Preliminary Inspections

Before Start-up Be sure that:

10.2 Start-up

- 1. When starting the pump for the first time, check for the correct direction of rotation.
- 2. The pump must be started off-load.
- 3. Verify correct feeding pressure.
- 4. During operation, check that the rotating speed does not exceed the rated value.
- 5. Before putting the pump under pressure let it run for at least 3 minutes.
- 6. Before stopping the pump, release the pressure by acting on the adjustment valve or on any discharging device.

11. PREVENTIVE MAINTENANCE

To guarantee pump reliability and efficiency, respect the maintenance intervals as indicated in the table below.

PREVENTIVE MAINTENANCE					
EVERY 500 HOURS	EVERY 1000 HOURS				
Check oil level	Change oil				
	Check / Replace:				
	Check / Replace: • H.P packings • L.P. packings				

fig. 14

In order to increase life of hydraulic components of the fluid ends, a flushing operation with clean water is recommended after every daily operation

12. STOPPING THE PUMP FOR LONG PERIODS

12.1 Inactivity for long periods

If the pump is started up for the first time after a long period from the shipment date, before starting operation check the oil level, check the valves as indicated in Chapter 10, and therefore follow the start-up procedures described.

12.2 Filling the Pump With An Anti-Corrosion Emulsion or Anit-freeze Solution

- a) Close the filter draining, if open.
- b) Be sure that the connecting hose is clean, spread with grease and connect it to the high pressure outlet port.
- c) Fit a suction hose to the membrane pump. Open the pump suction connection and fit hose between it and the membrane pump.
- d) Fill the container with the solution/emulsion.
- e) Put the free extremeties of the suction line and the high pressure outlet hose inside the container.
- f) Start up the diphragm pump.
- g) Pump the emulsion until it comes out of the high pressure hose.

- h) Continue pumping for at least another minute; if needed, the emulsion can be reinforced by adding, for example, Shell Donax
- i) Stop the pump, remove the hose from the suction connection and close it with a plug.
- Remove the hose from the high pressure outlet port.
 Clean, grease and plug both connections and the hoses.

12.3 Hoses

- a) Before greasing and protecting the hoses according to the previously described procedure, dry the connections using compressed air.
- b) Cover with polyethelene.
- Do not wrap them too tightly; be sure there is no bending.

13. PRECAUTIONS AGAINST FREEZING

In areas and periods of the year where there is risk of freezing, follow the instructions indicated in Chapter 12 (see paragraph 12.2).

In the presence of ice, in no case must the pump be started until the entire circuit has been completely thawed out; not complying with this indication may cause serious damage to the pump.

14. WARRANTY TERMS

The duration and the terms of the warranty are contained in the purchase contract. The warranty is void if:

- a) The pump has been used for purposes that differ from that agreed.
- b) The pump has been fit with an electric or diesel engine with performance greater than that indicated in the table.
- The required safety devices were un-adjusted or dis connected.
- d) The pump was used with accessories or spare parts not supplied by General Pump.
- e) Damage was caused by:
 - 1) improper use
 - 2) the non-observance of maintenance instructions
 - 3) use not compliant with operating instructions
 - 4) insufficient flow rate
 - 5) faulty installation
 - 6) incorrect positioning or sizing of the hoses
 - 7) non-authorized design changes
 - 8) cavitation

15. TROUBLESHOOTING

The pump does not produce any noise at start-up:

- · The pump is not primed and is running dry
- · There is no water in the inlet line
- · The valves are blocked
- The delivery line is closed and does not allow the air in the pump to be discharged

The pump pulses irregularly (knocking):

Air suction

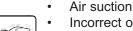
- Insufficient feeding
- Bends, elbows, fittings along the suction line obstruct the fluid's passage
- · The inlet filter is dirty or too small
- The booster pump, where provided, supplies insufficient pressure or flow rate
- The pump is not primed due to insufficient head or the delivery line is closed during priming
- The pump is not primed due to valve seizing
- Worn valves
- Worn pressure packings
- Incorrect operation of the pressure adjust ment valve
- · Transmission problems

The pump does not deliver the rated flow / is noisy:

- Insufficient feeding (see the causes listed above)
- · RPM are less than the rated flow
- Excessive amount of water by-passed by the pressure adjustment valve

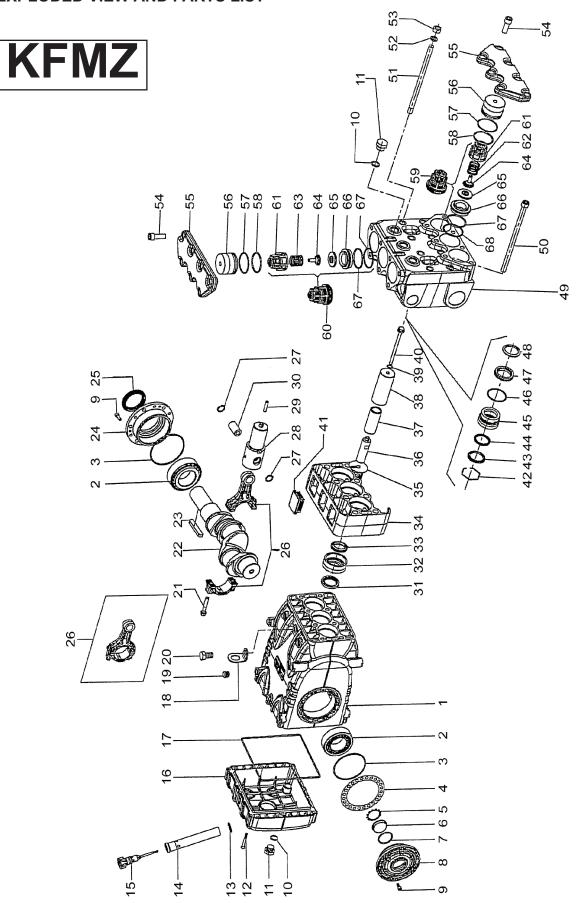
- Worn valves
- · Leakage from the pressure packings
- Cavitation due to:
 - 1) Wrong sizing of the suction hose/ undersized diameters
 - 2) Insufficient flow rate
 - 3) High water temperature

Insufficient pump pressure:


- The nozzle (or has become)too large
- Insufficient RPM
- · Leakage from the pressure packings
- Incorrect operation of the pressure adjustment valve
- Worn valves

Overheated pump:

- The pump is overloaded (pressure or RPM exceed the rated values)
- Oil level is too low, or the oil is not of a suit able type, indicated in Chapter 7 (see para graph 7.4)
- · Incorrect alignment of the joint or pulleys
- Excessive inclination of the pump during operation


Pump vibrations or knocking:

- Incorrect operation of the pressure adjust ment valve
- Valve malfunction
- Irregular drive transmission motion

16. EXPLODED VIEW AND PARTS LIST

A member of the Interpump Group

KFMZ SERIES

Item	Part #	Description	QTY.
1	F71010022	Crankcase	1
2	F91859000	Taper Roller Bearing	2
3	F90391800	O-ring, Ø 94.92x2.62	2
4	F71220081	Shim, 0.10 mm	1
	F71220381	Shim, 0.25 mm	1
	F71220581	Shim, 0.35 mm	1
5	F90075600	Ring	1
6	F70211801	Oil Level Indicator	1
7	F90387700	O-ring, Ø 39.34x2.62	2
8	F71150122	Side Bearing Cover	1
9	F99186800	Screw, TCEI M6x18, SS	12
10	F90384100	O-ring, Ø 17.13x2.62	4
11	F98218100	Plug, SS	4
12	201016	Rear Cover Bolt M6x50, SS	8
13	90360400	O-ring, Ø 25.12x1.78	1
14	F72210695	Tube For Oil Dipstick	1
15	F98212000	Oil Dipstick	1
16	F72160022	Crankcase Cover	1
17	F90400000	O-ring, Ø 215x3	1
18	F71223074	Lifting Hook	1
19	F98206000	Plug for Ø 15 port	7
20	F99512000	Screw, TE M16x25	1
21	F99313800	Connecting Rod Screw, M8x1x48	6
22	F71020035	Crankshaft	1
23	F91500000	Crankshaft Key, 12x8x70	1
24	F71150022	Motor Side Bearing Cover	1
25	F90170000	Oil Seal Ø 50x65x8	1
26	F71030001	Connecting Rod	3
27	F90060600	Snap Ring	6
28	F71050015	Plunger Guide	3
29	F95822000	Screw, M7x32	3
30	F97743000	Pin, Ø 20x38	3
31	90167800	Seal, Ø 38x52x7	3
32	2900006280	Support, LPS, SS	3
33	F90276800	Seal, Ø 30x43x8.5	3

Item	Part #	Description	QTY.
34	F71224922	Spacer, Manifold	1
35	F96714000	Wiper, Ø 10x50x1, SS	3
36	F71225266	Plunger Rod, Extension	3
37	76040056	Plunger, Ø 30x70	3
38	F71040509	Plunger, Ø 40x95	3
39	F90367100	O-ring Ø 11x2	3
40	F71223856	Plunger Bolt, SS	3
41	F98243600	Plug, 47x35x12.5	3
42	F90079700	ShimRing, Ø 52, SS	3
43	F71224066	Packing ring, Ø 40 - SS	3
44	F90245000	L.P. packing, Ø 40, SS	3
45	F71223966	Packing support, Ø 40 - SS	3
46	F90389100	Packing O-ring, Ø 52.07x2.62	3
47	F90246000	H.P. Packing, Ø 40	3
48	F71225566	Ring, Ø 40	3
49	F71127636	Manifold, NPT Ø 40 SS	1
50	201020	Manifold Bolt, M12x220, SS	6
51	201017	Manifold Stud, M12x207, SS	2
52	201018	Lock Washer, M12, SS	2
53	201019	Nut, M12x19x10, SS	2
54	F99429500	Screw, M12x35	14
55	F71223636	Valve Cover - SS	2
56	F71223766	Valve Plug - SS	6
57	F90525000	Back-up ring, Ø 50.9x55x1.5	6
58	F90388900	O-ring, Ø 48.89x2.62	6
59	F36716101	Suction valve assembly	3
60	F36716201	Delivery valve assembly	3
61	F36204551	Suction/delivery valve cage	6
62	F94754000	Suction valve spring	3
63	F94755000	Delivery valve spring	3
64	F36208651	Suction/delivery valve guide	6
65	F36209302	Suction/delivery valve plate - 17-4 PH SS	6
66	F36209156	Suction/delivery valve seat - 17-4 PH SS	6
67	F90388900	O-ring, Ø 48.89x2.62	6
68	F90524000	Back-up ring, Ø 49.5x54x1.5	6

REPAIR KITS

KIT 2124 KIT 2125		KIT 2126	KIT 2127	
51, 61	46	40	3, 5, 7, 10, 14, 22,32, 33, 39, 51, 61, 63	

MAINTENANCE LOG

HOURS & DATE

OIL CHANGE				
GREASE				
PACKING REPLACEMENT				
PLUNGER REPLACEMENT				
VALVE REPLACEMENT				

GP Companies, Inc. 1174 Northland Drive Mendota Heights, MN 55120 Phone:651.686.2199 Fax: 800.535.1745

www.generalpump.com email: sales@gpcompanies.com

Ref 300732 Rev.A 02-10